BTIC FIiLE COPY

AD-A228 474

" DIETRIBUTION STATEMENY &7
Approved for public releasey:

Repository Guidebook (Final) Technical Report

Software Technology for Adaptable, Reliable Systems

Diribution UsBastied, "

-

) Document No.1550-001
30 April 1990

&

for the

(STARS) Program

Contract No. F19628-88-D-0032

Task IR40: Repository Integration

CDRL Sequence No. 1550 .
R. H. Ekman >
(Author) ‘

DTIC

30 April 1990 g L FECTE

Prepared for:
Electronic Systems Division
Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000
Prepared by:

1BM Federa! Sector Division
800 North Frederick Avenue

Gaithershurg, MD 20879 q @ / /

E OIS

REPORT DOCUMENIA"!QN PAGE g‘m :g";‘%‘;‘_’m&

Puplic reporting butden 1or this cutection L INFGIMAtIor 5 »sUMated 12 3ver1ge R yur par resparse INALUGING the time 1Or reviewing instructs ny, searchindg eusting data soutes
qatbennrg Ing Mmamntaining the a3t neeged, and compieting and review g the (aliectiun o int rmatiyn yend Lomments (rgarcing ths burden estimate or any other aspect of thiy
orean 31 NorMation ruucing suggestions tur requun 3 this DUraen 1 Aashinglyn reagauariers Services, tirectorate for inturmation Operations and Repwrts, 1215 Jetterson
v High way, Suite 1204 airhngton, v 22202-4302 nd tu the Otfice of Management and buo 20t Papnrwers Reduction Project (87040 188) Washington, uC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
April 30, 1990 Final
4. TITLE AND SUBTITLE . 5. FUNDING NUMBERS
Repository Guidebook (Final) Technical Report C: F19628-88-D-0032

6. AUTHOR(S)
R. Ekman

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

. . REPORT NUMBER
IBM Federal Sector Division

800 N. Frederick Avenue
Gaithersburg, MD 20879

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

. e AGENCY REPORT NUMBER
Electronic Systems Division

Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000 CDRL Sequence No. 1550

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A guide to software reuse using the STARS Repository. This document contains the
IBM STARS Repository Guidebook, STARS Repository User's Guide, and STARS Reusability
Guidelines. Each is described below?

RS
<;\IBM STARS Repository Guidebook. A guide to the STARS Repository, providing high-
level information for all users -- component reusers, component suppliers, and

repository administrators. The Guidebook is org?nized according to the specific
roles that users perform when using the system.

| foTes fhat users perd tem:)

»

"~ STARS Repository User's Guide. A guide on how to access and use the STARS Reposi-
tory. It provides the basic information needed to use th2 repository software, but
it is not a comprehensive guide to the VAX computer, on which the repository is

built. D
‘STARS Reusability Guidelines. A set of Ada coding guidelines for component develop-

ment that emphasize reusability., Code _that follows these guidelines will be easier
P40 S Ne) les are

to reuse on multiple pro’ rt. 0 rovided illustratin

14. SUBJECT TERMS .1 guidelines. (Kdz } (___.....» 15. NUMZBSF; OF PAGES
STARS, software reuse, suftware._reuse library, Ada coding 16, PRICE CODE

guidelines, Ada

17. SECURITY CLASSIFICATION]18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Presenbed by ANSE Std 239418
Mg)

Abstract

This technical report (CDRL Sequence No. 1550) addresses subtask IR40.1.1 (Guidelines,
Procedures, and Standards) of the STARS Delivery Order Task 1R40 (Repository Integration). It
includes, as an attachments, the IBM STARS Repository Guidebook, the STARS Reusability
Guidelines, and the IBM STARS Repository User’s Guide. This report presents the methods used
and lessons learned in developing the guides and the Repository. It is a revision of the draft

Guidebook (CDRL Sequence No 1540).
The Repository guides define
How to use the IBM STARS Repository,

Abstract

Resources and capabilities of the Repository,

Procedures for submission and usage of repository components,
Processes involved in managing repository assets, and

The reuse process in the context of the STARS repository.

Component standards for admission to and promotion within the Repository,

wascsitiib

Accession For

NTIS GRA&I & |

DTIC TAB a
Unannounced 0
Justification |

By.
Digtribution/

Dist

v

Availability Codes

Avail and/or
Special

Preface

Due to its collective purpose and broad subject coverage, this report and the attached guides contain
contributions from numerous individuals and relies on the work presented in many other
documents and articles. Key among these are: Wendell Young and Gary Turner, authors of earlier
IBM STARS documents; and all the developers in the IBM STARS IR40 team: Matt Bieri, Carol
Heymann, Pamela Metcalf, Barbara Morck, Kyle Kennedy, Steve Kutoroff, Mike Puhlmann, and
Tom Ward.

This report was originally scheduled to be completed on January 31, 1990, but due to the allocation
of personnel to other STARS critical tasks and the extension of the STARS R-increment it was
not completed until April, 1990. The attached puides will be updated at the end of the R-increment
extension to reflect the final R-increment Repository.

This report was developed by the IBM Systems Integration Division, located at 800 North
Frederick Ave., Gaithersburg, MD 20879. Questions or comments should be directed to the
author, Robert W. Ekman at (301) 240-6431, or to the IBM STARS Program Office.

Preface iii

Table of Contents

Introductiont i i e e i et et e 1
Identificationot e e 1
PUIDOSE L. e e e e e 1
TemmINOlOgY . .o e e e 1
Task Descriptionot e e 3
Information SOUrces oottt e 3
Guidebook Conceptttt i i i e i e et e e 5
Organization/StruCtUre ottt e e e e e 5
L0103 11 ¢ 6
ASSUMPHIONS .+ ottt ittt ettt e e e e e 7
Concusions ... it i i e e e e e e e e 8
Lessons Learnedot i e e e e e 8

Repository Lessonsouiuiiiniii it i e e 8

Reusable Component Lessonsouuniniit ittt it 11

Software Development Life-Cycle Lessons innnen... 12
Recommendations i e e e 15
Referencesttt it it i ittt e e e e e 16
Bibliographycuiiiiiii i i e e et i e e 17
ACTOMYIMIS o ittt itn et itenaseneeetoeotoaenoneneaasonnneoenssennnnsos 21
AaCMENES .« . o i e e et e et e e e 22
‘T abic of Contents iv

L

Introduction

Identification

This technical report, IBM Contract Data Requirements List (CDRL) Sequence Number 1550,
addresses the Software Technology for Adaptable, Reliable Systems (STARS) Subtask IR40.1:
Functionality, as defined in the STARS Prime Contractor, Delivery Order 2 [DO2), Task IR40:
Repository Integration, and satisfies, in part, the IBM STARS Program Administration Plan
[IBM1280], Subtask IR40.1.1: Guidelines, Procedures, and Standards.

This report is a revision of the Repository Guidebook (Draft) [IBM1540], which was delivered
under the same subtasks. Refer to the Program Administration Plan for a complete list of deliveries
under the IR40 task and its subtasks.

This report follows the format requirements of MIL-STD-847B, as specified in the Technical
Report Data Item Description (DID) DI-S-3591/A.

Purpose

This report was prepared to satisfy the delivery requirements of the STARS IR40 Repository
Integration task and to provide a place to record the experiences gained from the task. The
Guidebook, Guidelines, and User’s Guide are attached as a separate stand-alone documents that
can be distributed to users of the Repository.

The guides are a collection of descriptions, procedures, and guidelines that covers all views of the
IBM STARS Repository, including system access, user roles, repository capabilities, component
contributions, component coding, and repository administration. The guidelines and procedures
have been applied to the IBM STARS team tasks during the STARS prime contract R-increment
and will be applied to IBM STARS tasks in subsequent increments.

Terminology

The following is a list of terms and definitions used in this report. An appreciation of these terms
will help in understanding the IR40 Repository Integration task. We have chosen to present them
in a descriptive order which supports the relationships between the terms and permits serial reading,

component A collection of related work products to be used as a consistent set of
information. Software work products can include specifications, design,
source code, machine code, reports, compilation units, code fragments and
other components. A component is the focus of a repository and is intended
to be reused. It is the primary type of object found in a repository. Also

referred to as an asset, or resource.

part An clement of a component, such as design documents, source code, test
information, and data rights. While a part may be copied or browsed, when
stored in a repository it is alway, associated with a component.

Introduction {

reuse

repository

repository system

depository

organized repository

filtered repository

certified repository

reuser

supplier

librarian

topic specialist

filtering
gatekeeper

The application of existing solutions, as captured in components, to a
problem other than the one for which they were originally built.

An element of the software engineering environment in which software work
products and information about them are stored. Its primary purpose is to
support the reuse of components through a process of component
submission and extraction. Also referred to as a reuse library.

An instance of the software engineering environment, including computer
hardware, operating systems, software tools, standards, and procedures that
together prowde a complete repository capability. These capabilities include
acquiring, storing, managing, retrieving, and dispensing software work
products and information about them to potential reusers. A repository
system may contain several repositories, each dealing with a different
problem domain.

A repository or part of a repository whose contents are deposited as is, with
few or no constraints. A depository is primarily a storage facility. Quality
and usability are unpredictable; the burden is on the user to find and evaluate
useful items.

A repository whose contents are documented and organized in a
comprehensive manner as components and parts. Finding, reviewing, and
extracting components are supported. The quality and usability remain
unpredictable.

A repository whose components are subjected to standards on form, content,
quality, and consistency. This is not a physical partition from the organized
repository, rather it is a documented higher level of confidence in an existing
organzed component.

A repository whose components exhibit the highest level of confidence. A
certified component permits the proving of correctness in a solution that
reuses the component. Aspects of security, ownership, distribution, and user
set take on greater importance.

A person who reviews the contents of a repository and extracts components
for reuse. The common user of a repository. Also refecred to as a user.

A person who places components into a repository. Also referred to as a
contributor, or submitter.

A person who coordinates, organizes, and controls the contents of a
repository. Also referred to as a system administrator, database
administrator, or repository administrator. This person frequently provides
a first level help for other users.

A person who is responsible for the evaluation of components and their
promotion to the filtered or certified status. This person is an expert in the
repository domain and has reviewed many of the components in the
repository. Also referred to as a domain expert, or technical consultant. This
person frequently provides a second level help for other users, via reference
from the librarian.

The act of evaluating components and promoting them to filtered status.

An automated capability that facilitates filtering.

These definitions are derived from definitions in several STARS Prime contract documents
[IBM380, IBM460, Bocing330, Unisys340], and from several industry publications [IEEE729,
SPCStyle]. A complete list of the IBM STARS Repository terminology is given in the Guidebock

Glossary.

Introduction

Using these terms, the IBM STARS Repository is defined as a repository system, that supports the
reuse of components in the domain of software engineering environments. The Repository
contains a full suite of capabilities and guidelines that are required by users of the system. The
Repository supports multiple levels of component confidence (depository, organized, filtered, and
certified) and has facilities to promote components through these levels.

Task Description

This report and attached guides are the results of efforts by members of the IBM STARS IR40 task
team over the eight month performance period of the task. We conducted numerous reviews,
meetings, and discussions on the material presented. We iteratively developed and evaluated
operating prototypes to experiment with ideas and validate approaches.

Several existing repositories were reviewed and exercised, including the Ada Source Repository
(ASR), the AdaNET information service, the Boeing STARS Repository, and the Army RAPID
component repository. These systems provided insight into performance, content, and user issues.

Besides the producing these guides, our activities have

Refined the state-of-the-art in repository and reuse technology,

Improved our understanding of operational repository systems,

Made our experiences available to government and industry through our delivery items, and
Established an operational repository to support future IBM STARS tasks.

Information Sources

The primary sources for this report and the attached guides were the IBM STARS documents:
CDRL 380 Consolidated Reusability Guidelines [IBM380], CDRL 460 Repository Guidelines and
Standards [IBM460), and CDRL 1540 Repository Guidebook (Draft) [IBM1540). These
documeni: were derived from several older documents, some of which were reviewed again during
this task. In aldition, this report, the guides, and the Repository development were influenced by
numerous articles ~nd papers on software reuse and repository technology.

The following is a stz *~tur=d list of the information sources that were used during this task.
Complete references fr r the documents are in the Bibliography for this report. Copies of all the
STARS documents c.an be found in the IBM STARS Repository.

1. STARS Q-Increment Documents

a. IBM
1) Task Q12
a) CDRL 460: Repository Guidelines
b) also, but of lesser importance:
i. CDRL 470: Repository System Plan
ii. CDRL 480: Demonstration Script
iil. CDRL 490: Demonstration Results
iv. CDRL 500: Repository Specifications
v. CDRL 510: Repository Implementation Report
vi. CDRL 520: Repository Configuration Control Plan
vii. CDRL 530: Prototype Repository Implementation
2) Task Q3
a) CDRL 110: Enviromment Capabilities (included CDRL 100: Matrix, and CDRL
90: Requirements)

3) Task Q9
a) CDRL 380: Reusability Report (included CDRL 370: Analysis, and CDRL 360:
Guidelines)
b. Boeing
1) Task Q12

a) CDRL 320: Repository Guidelines

Introduction 3

b) also, but of lesser importance:
i. CDRL 330: [nitial Capabilities
ii. CDRL 380: Configuration Control
iii. CDRL 400: Repository Report
iv. CDRL 420: Demonstration Plan

¢) peer review of:
i. IBM Task Q3 CDRL 100
ii. IBM Task Q9 CDRL 380

c. Unisys
1) Task Q9
a) CDRL 340: Reusability Guidelines

2. STARS R-Increment Documents

Task IR40: Repository Integration Proposal

Task IR40 CDRL 1540: Repository Guidebook (draft)

Task IR40 CDRL 1580: Taxonomy Report

Task IR40 CDRL 1590: Repository Prototype Specifications

Task IR40 CDRL 1600: Repository Version Description Document
Task IR40 CDRL 1610: Repository Demonstration

Task IR10 CDRL 1440: Repository Operations

Task IR10 Repository User's Guide

Task IR11 CDRL 1460: Repository Policy and Procedures

Task IR11 CDRL 1470: Repository Operations and Procedures

3. Other IBM Documents

CereDrge e B0 O R

a. IBM Systems Integration Division Owego Reusability Guidelines
b. IBM Systems Integration Division work in reuse and repositories
c. IBM Corporate work in reuse and repositories

4. Other Key Documents

a. Software Productivity Consortium (SPC) Ada Style Guidelines
b. Naval Rescarch Laboratory (NRL) Reusability Guidelines
c. SoftTech Reusability and Portability Guidelines

5. Tools/Product/System Documentation

VAX/VMS
AdaMAT
Oracle
ASR
RAPID
AdaNET

~me R0 o

6. Miscellaneous

IBM STARS Program Office notes
Developer’s notes

Feedback from reviewers
Operational repository procedures

2.0 o

Introduction

Guidebook Concept

The goal for the Guidebook is to define the reuse process and gather in one place all the references,
standards, guidelines, and procedures related to the operation and use of the IBM STARS
Repository. The Guidebook and related guides will be handed out to software engineers who want
an introduction to the Repository and will be using the system. The guides will be stored in
electronic form on the Repository system.

Organization| Structure

The Guidebook was prepared in separable parts to assure accessibility and convenient use. The
arrangement of its constituent parts is a matter of practicality, dictated by the source of the
information.

The Guidebook has become a suite of documents, with the Guidebook at the center. This technical
report is considered a ‘preface’ to the Guidebook and not required by any Repository user. The
Reusability Guidelines were separated from the Guidebook to provide guidance for component
developers. The User’s Guide was also made separate from the Guidebook to permit changes in
operational aspects of the Repository, without republishing the complets guidebook.

The Guidebook and its related guides are living documents. Each part has a potential for change
based on its relationship to the Repository system and reuse as practiced by the IRM STARS team.
Updates will be prepared as these changes dictate.

Guidebook Technical Report

attachments

v

Guidebook Body —_

Appendix A -——> reference to other documents,
system help and text files

Appendix B

Appendix C -

User's Guide <

Reusability Guidelines <

-~ “
- 1 -

Figure 1. Graphic Model of the Guidebook Parts ¢

Guidebook Concept 5

In organizing the body of the Guidebook, we considered several dimensions or views of the
Repository and the reuse practices. These included:

the roles of system users (reuser, supplier, administration)
repository levels (organized, filtered, certified)
requirements for entry and promotion

procedures to be followed

system design and architecture

e & & o 0

From discussions of these alternatives, we decided that the roles dimension was the best way to
present the material, and that roles would be the focus of the body of the Guidebook. The other
views tended to have long Usts of detail and did not help the user in organizing their approach to
reuse. The other views are presented in the appendices or by references to other material.

Content

The Repository Guidebook defines

* Resources and capabilities of the STARS Repository,

® Procedures for submission and usage of repository components,
¢ Standards for promotion of components within the Repository,

® The processes involved in managing repository assets, including component corfiguration
management, problem tracking, promotion, and entry and exit criteria, and

¢ The reuse process in the context of the STARS repository, covering the admission, adaptation,
integration and testing of reusable components, as well as methods for locating and selecting
reusable components.

While producing the Guidebook, reviewers asked for many topics to be included. We realized that
attempting to cover all of them would be difficult, but we also felt that most of the request were
real needs for some part of the user population. The challenge was to organize the material and
structure the documents to give an meaningful impression of the repository, while preserving
enough detail to be helpful for a particular user with a specific problem.

The following is the list of topics we addressed in this task and where we decided to place it.

Guidebook material Location

people roles and activities body

glossary body

definitions body, report
references body, report
acronyms body, report
relationship to STARS tasks report

guidebook concept report

assumptions report

lessons learned report

bibliography report

summary of resources and services appendix

gate definitions (filter 1list) appendix

user directions appendix, attachment
coding guidelines for reusability appendix, attachment
~perational policies of our system appendix, reference
data requirements and database tables reference

help information reference

system screen images reference

how to do reuse reference

where reuse fits in lifecycle reference
configuration management reference

access security reference

Guidebook Concept 6

Assumptions

The following assumptions pertain to the guidelines and procedures presented in the Guidebook.

The Guidebook and associated guides support reuse within the context of a software intensive
project. They may be used to establish a starter set of guidelines, but does not form a complete
set. Your project should modify and augment these guidelines to address domain and system
specific issues.

Issues of security, proprietary rights, and component ownership are beyond the scope of this
version of the Guidebook, but may be found in referenced documents.

The coding guidelines are directed primarily toward Ada software engineering. While some
guidance may apply to a broader class of components, the focus is on Ada software. The
guidelines can thus treat specific aspects of Ada that relate to reusability.

No assumptions are made about design methodology and relationships to reuse.

Reuse is assumed to include tailoring of reusable components. It is likely that a significant
amount of reuse will involve some tailoring of the component code. Thus, there are guidelines
to promote tailorability. Note that tailoring should be distinguished from the broader term
maintenance, which not only includes tailoring but also includes the idea of corrective
maintenance (fixing bugs).

Guidebook Concept 7

Conclusions

The IBM STARS IR40 task team has worked for nine months developing the prototype repository
system that is documented by the Guidebook. The team has included up to ten engineers, in three
different locations, developing the system on several different platforms. The team developed four
releases of the system following an iterative refinement prototyping method. The experience gained
during this task is the basis for the conclusions in this report.

Lessons Learned

Several situations arose during the writing of the Guidebook and the development of the Repository
which we believe contain “lessons learned” that could be applied by the greater software
development community. We have collected these lessons and classified them according to software
engineering technology areas. In many cases, the lessons were previously stated in draft documents
and status reports. Our purpose in this report is to gather all the IR40 team lessons learned into
one place.

The lessons are stated as a recognized problem or situaticn, followed by our observations on the
problem, an implemented solution, or alternative potential solutions.

Repository Lessons

At a high level, developing a repository has issues and design similar to the development of any
on-line application with a large database. But when you consider a repository system as a special
clement in a software engineering environment, unique problems appear.

From an object-oricnted view, the life-cycle of objects in a repository is similar to the life-cycle of
objects in a software engineering configuration management system. The differences are that the
repository objects are less frequently updated, that there are weaker relationships between the
objects, and that ownership is harder to establish. A software engineering environment deals with
objects as a project library, while a repository deals with objects as a public library.

e [t is hard to describe the Repository due to the varying experiences of the users and the different
roles they play in the reuse paradigm.

The critical information in a repository can be viewed from many different perspectives. For
example, the coding guidelines can be viewed from the perspective of the developer of reusable
components, the submitter who presents the component for admission to the Repository, the
topic specialist who analyzes the component, and the reuser who extracts the component from
the Repository. The developer follows the guidelines in creating the initial work product. The
submitter and topic specialist reference the coding guidelines to confirm that they y have been

adequately followed. The reuser will want to know what coding guidelines are preferred and
supported by the repository to facilitate the usability analysis.

To address this situation, we organized the body of the Guidebook based on user roles. We
also organized the Repository capabilities based on user roles. This organization is apparent
in the sclection menus and the system design.

® There were few aids to make it easy to follow guidelines and there were no aids that support
different user roles.

Conclusions 8

Each role is defined with a set of procedures which generally refer to one or more sets of
guidelines. The guidelines are often too extensive or too broad for regular reference. We found
that checklists can be used to promote consistency and completeness and to customize
guidelines and procedures to a particular environment or application. The checklists made it
possible to provide a single set of general guidelines and use the more succinct checklist to place
emphasis on the important guidance. For example, the coding guidelines are customized for
the component developer by the coding guidelines checklist. Further customizing could be
achieved by providing portability and reusability checklists which emphasize those coding
guidelines that topic specialists should consider in evaluating a component for admission to the
repository.

® The relationships between Guidebook information, its sources, and users are complex.

The intellectual, physical, and temporal relationships among the Guidebook information, its
sources, and its users are quite complex, making it difficult to provide the information in a
meaningful and manageable manner. It seems clear at this point, that the CDRL delivery
mechanism is not the complete answer, since the information in deliveries, as a whole, changes
continuously. The fundamental problem is the paradox that specific information is both more
useful to Repository users and more volatile than more general information. For example, the
names of individuals identified as points of contact or assigned to other roles are more likely
to change than the role abstraction.

The potential users of the information contained in this Guidebook are many and diverse.
For this information to be used, it is necessary to achieve several goals. It must be provided
accurately, when it is needed, where it is needed, in a form that is meaningful to the user of the
information, and in a manner that is as unobtrusive as possible. Indications (such as
time-stamp or version number) should also be provided to give the user confidence that the
information is as timely and accurate as it needs to be. This implies that information updates
must be rapidly disseminated to end users. Ways must be found to improve the packaging and
delivery of the Guidebook and its information content.

® [t was difficult to synchronize updates to information, even when a direct relationship was
understood.

Information sources also influence the packaging objectives for the information since it is
desirable (though not necessary) for information provided by a given source to be (logically)
co-located and for updates to occur as atomic operations to cnsure the continuing validity of
the complete document.

This becomes increasingly important as various manual functions are automated. We have
used information modelling techniques to develop our understanding of the relationships and
predict the synchronization problems.

o The development guidelines, on-line definition of the guidelines, and the automation of
component review regarding the guidelines were difficult to coordinate.

In establishing a complete repository, we developed guidelines for components and procedures
for the component life-cycle within the Repository. These guidelines and procedures appeared
in several places, such as the Guidebook, on-line help, and rules for Ada code metric analysis.
In addition, they were refined and modified over time.

This situation made it difficult to coordinate the guidelines development. At times the
guidance in one place contradicted the guidance in another place. By the end of the
R-increment, we behieve most of the irregularities have been addressed, but we have not
established an easy way to keep the guidance coordinated and get a reasonable level of
consensus.

® Anundefined glossary made documentation, discussions, and component evaluation difficult.

In the Repository, we needed to distinguish terms from their more general English definitions.
We constructed a structure of terms and classifications within those terms, but we had difficulty
in communicating our meanings. '

Conclusions 9

We found many competing definitions for the same words. Similar type work in reuse and
repositories is being conducted by many organizations and they have published their glossaries.
These definitions overloaded our definitions and caused misunderstanding. Further, we
contributed to the confusion due to our own refinement and elaboration of our definitions over
time. These problems are not unusual in leading-edge efforts, but they are areas for concern
and require attention.

Our answer to the terminology problems was to include our definitions in several key
documents and reports. We reviewed some of the competing glossary lists and adopted their
definitions where appropriate. But in the end, we were left with a set of derinitions that work
for us, but are neither “fish nor fowl” in any official world.

A similar issue appeared when reviewing documentation for software components. For
example, it was difficult to understand anu evaluate the “Dates” software package without a
good understanding of horological terms, such as Julian date.

To answer the component understanding problem, we have suggested that components
contain a glossary of keywords in all related documentation. There is a direct relationship
between the documentation of the component glossary and the readability of the declarative
section of the code.

The linear nature of hard-copy documents does not translate to on-line review very easilp.

Books, manuals, and other hard-copy documents are inherently linear in physical organization.
This results in difficult choices: Is it better to repeat textual information at the risk of annoying
the reader who encounters repeated text, or is it better to provide references among the singular
instance of a unit of text much like is done in an encyclopedia, putting the burden of locating
the information on the reader?

In the Guidebook, we chose the reference approach. This choice also reduced the maintenance
and new material problems, much like subunits in a programming language.

Some alternatives to the linear organization are network links between material as implemented
in hypertext systems, and hierarchy tree models as implemented in many on-line help systems.
These alternatives are desirable organizations for the Repository information system, but were
displaced by more important tasks.

Automated component evaluation was only partially successful.

We attempted to construct an automatic filter for components going into the Repository and
for evaluation of components within the the Repository. We found it time consuming and
difficult to construct these automatic filters, and we found that they ultimately would only do
part of the job.

To evaluate the compilation status of a component, the bulk of the effort was consumed by
review of the compilation order information, location of external packages and libraries, and
similar type tasks. Running the compiler was trivial, and automation of just the compilation
step did not save much effort.

The review of documentation was all manual. We were not able to locate or build any tool
to help with documentation evaluation. Because of the variety of documentation standards
and styles, it is unlikely this area will be automated soon. There are some tasks, such a

grammar and spelling checks, that can be supported by tools, but they do not help with the
evaluation of documentation completeness.

Review of Ada code was partially automated with the help of the tool AdaMAT, by Dynamics
Research Corporation (DRC). This tool gave us counts of constructs that are considered
“good” against a count of where the construct could have been used. The AdaMAT reports
helped to suggest places and issues to review, but could not substitute for human inspection
of the code.

Conclusions 10

Reusable Component Lessons

We populated the IBM STARS Repository with hundreds of components and thousands of related
parts. This population task was usually accomplished by system administrative engineers, and
occasionally by the component authors.

Some of the following lessons may seem obvious and the answers may appear to be the application
of rigor and management techniques. But this is the area where we had the least success. We
originaily planned to have many more components and parts in the final repository. Every time
we sat down to really build up the repository content, other things got in the way. The database
structure kept changing, the submit mechanism was too hard to use, or the task was just too boring
and labor intensive.

The following lessons present major issues from our evaluation of the problems in repository
content management.

o [t is difficult to successfully and completely contribute a component from a third party.

The process of organizing the components in a repository is more difficult when the
components are extracted from a source, rather than submitted by a supplier. For example,
some of the components from the Ada Source Repository (ASR) have been organized on the
IBM STARS repository. These components took much longer to organize than the
components submitted by the STARS prime contractors, because the ASR librarian was not
involved in meeting the IBM STARS repository entry requirements. On the other hand, some
of the STARS prime components were well known by the people doing the entry to
repository, and the time required to organize them was significantly less.

This observation led us to put a greater emphasis on having the component author do the
submission to the repository. The person who knows the most about a component is its
author, and the repository submit process should take advantage of this knowledge. The
submit process must be easy to use, capturing a large amount of information, which would
be harder to acquire later on. A clear but not extensive set of guidelines and procedures must
be established, and they must be supported by the system capabilities, especially at the
component entry time.

This observation also leads us to question the value of third party repositories that are currently
available, such as the ASR, AdaNET, and the Ada Information Clearinghouse. These systems
freely pass along components and information, and they support general communications,
which is much needed in the Ada technology community. But without the explicit
involvement of the authors in the cataloging and depositing of the components, the confidence
is Iowered in the ownership, completeness, and currency of the component. And confidence
in the extracted component is significant in the success of reuse.

o There is little incentive for engineers to contribute their work products to a repository outside
their current project.

This lesson is not new. We have just recognized it again, and we want to reiterate the problem.
A good reuse repository must contair: some incentives that make people want to supply
components for reuse. Further, our observations revealed that components that do not have
the force of an incentivized supplier behind them, are probably not good candidates for a reuse
repository.

While not being terribly successful, we have attempted to place a repository subinission
subtask in all major tasks. The concept is that onc of the measurciuents i completing o task
is the submission of reusable components out of the task’s workproducts into the repository.

This 1s the model that we will follow in future IBM STARS tasks.

A major disincentive to engineers in our repository model is the effort required to contribute
a component. It takes as much as four hours to contribute a moderate size component. This
seems excessive, but we believe it is justified. The effort to supply components is inversely
proportional to the effort 1o reuse, and a primary objective of a repository system is to reduce
the effort to reuse. A balance is required between the two efforts. A factor in this balance is

Conclusions 11

the realization that supply is a one-time effort and reuse is a recurring effort. Each reuse
increases you return on supply cost investment.

® The names of componerts and the names within components confused the repository
administration and reusers.

Contributors frequently used names that are only meaningful to their environments. The
names may be imbedded in their contributions and don‘t “flow through” to the repository
system, or to the reuser’s development system.

This problem has became more apparent during final reviews of the Repository code and the
Repository content. It can be a serious inhibitor to software reuse.

We have established name guidance for the Repository development to reduce this problem.
The initial guidelines are in the Guidebook. We anticipate refinement of these guidelines and
additional guidelines as we learn more about the problem.

® Software corponents without compilation order information are almost useless for the reuser.

This lesson may seem obvious, but some contributions to our repository (and many
contributions to other repositories) have not included compilation order information. The
submitter assumes the component is simple enough, such that anyone could compile it, or they
rely on the naming convention to indicate compilation order. In some cases, it may be
acceptable, but the absence of the compilation order information almost always causes
confusion.

Our guidelines require compilation order information and it is part of the evaluation process
followed by the topic specialists. We do not bar contributions without compilation order
information, but the components without it will unlikely make it to the filtered state.

Software Development Life-Cycle Lessons

During the development of the IR40 prototype repository sysiem, we followed a rapid iterative
refinement methodology. We did not follow the conventional waterfall life-cycle, rather we
followed the emerging software-first life cycle. We eliminated alrost all “standard” documents and
took many shortcuts in order to produce the greatest amount of operating prototype capability in
the shortest time. We wanted to produce the “look and feel” of a repository, based on a general
environment architecture, with standard interfaces, all running on real data in a significantly
populated database.

We believe the pro »ss we followed was acceptable and produced a cost effective repository system.
We plan to continue to experiment with this process in future IBM STARS tasks.

We anticipated most of the problems we encountered, since we recognized our deviation from the
norm, but we were surprised at how much effort and time was required to address them. There
was always a strong feeling to stay with whatever we had, in both software and methods. There
was a continuous and uneasy balance between resources available and planned tasks.

o Operational, development, and test environments interfered with each other.

The Repository not only was developed in several locations and on several platforms, but also
contained several parts which did not come togetuer until we build an operational system, such
as the database, menu system, and scarch mechanism. This is not unique to this project, but
it did cause siress on the development cycle.

We had to develop multiple databases, and populate them several times. Separate test
environments needed t¢ be muatained to allow testing to proceed without disruption of the
existing repository data base.

We developed several layers of the architecture simultancously. To accomplish this, we copied
significant amounts of source code into several development environments. Each environment
had naming restrictions which forced us to use different naming patterns for the same source
elements. These duplicate systems created a versioning maintenance problem. This also

Conclusions 12

lowered our confidence with the final product, because we could not guarantee that the
migrated elements were unmodified.

o Too few people tried the system too late for changes.

The development model we followed called for frequent execution of the evolving system by
a wide user population. We accomplished this through full system releases to the STARS
community and partial prototypes for a narrow set of users. We either demonstrated the
prototype or asked the user to experiment with it by themselves. We captured remarks from
demonstrations and problem reports from individual users, as our feedback mechanism.

The problem we had was in striking a balance between preparing clean prototypes for a large
set of users and rapid prototypes for a controlled group. Even though we maintained
operational parts of the system throughout the task period, it still took significant efforts to
put together fully operational systems. Complete systems were needed for the user to
experience and appreciate the set of capabilities. In some cases, we put together partial systems
which demonstrated particular ideas. These prototypes proved useful, but only to a small set
of intimately involved users.

We did not uncover any simple way to approach this balancing effort. Just continual attention
to the basics of rapid prototyping is all we can offer as a lesson. Rapid iterative development
is mo1e successful if early prototype capabilities can be made available to a wide sct of
experienced users who have access to immediate and easy to use feedback mechanisms.

o The Repository user interfaces were not consistent among embedded tools.

Rapid prototyping and integration frequently leads to systems with “bumpy” user interfaces.
In constructing a rapid prototype, you must reuse components that were written for widely
different situations. The user interfaces that accompany these components are usually
inconsistent. They were written to take advantage of the perceived users experience and
operational system. If, when searching for reusable components, you stay only within a single
domain and platform, you will reduce this problem, but you will not be able to take advantage
of other reuseable components. The development cycle becomes a trade-off between
capability, usability, and time.

During the development of the Repository, we concentrated on the balance between capability
and usability. We attempted to extend the system capability with less regard for usability.
This approach was helpful in developing the overall architecture and design, but when it came
time to demonstrate the system, we discovered usability problems. The problems with
usability caused us to lose “user hours” and reduced the feedback on the prototype, and thus
reducing the benefit of this life-cycle.

® Parts of the Repository system did not have clear ownership.

The final operational Repository is not a single unit, but rather a collection of executables, held
together by a menu selection mechanism, relying on a database for much of the display
window content. Included in the Repository are the Guidebook, guidelines, and numerous
help screens. A significant amount of material was reused from the STARS Q-increment and
incorporated into the Repository system. Furthermore, over the repository development
period, there was considerable turnover in the IR40 team. These facts lead to situations in
which there was uncertain o* ‘nership of elements of the Repository system.

While the ownership problems were cleared up by the end of the R-increment, it was a
noteworthy issue during development. Without clear ownership, rapid development can get
out-of-hand. Cilcctive configuration managument methods shouid be used 1o get the most out
of iterative development. When you reuse material that does not have clear ownership, you
must be willing tc take on ownership. You need to be concerned with ownership of guidelines

and procedures to the same level as ownership of software.
® Quality assurance was not consistent or occurred too late.
Even in a rapid prototype development cycle, as performed by the IR40 team, an independent

quality assurance audit needs to be conducted. The audits conducted on the Repository

Conclusions 13

system, brought forth several potential problems that were taken care of before reaching the
users. But the development cycle used on the Repository did affect the quality assurance tasks.

The timeliness of the quality assurance tasks was a problem. Frequently, we were well into
the next iteration before the assurance tasks were complete. The system had matured and
obviated many of the reported problems.

The second problem we had was consistency across the multiple sites and development
platforms. Each group had their own way of handling quality assurance. The pressure to
develop and demonstrate quickly, as called for in a rapid development cycle, dictated that we
skip a more complete and orderly approach.

o User initiated demonstrations were not effective.

Two methods were used to get reviews of the Repository prototypes: general broadcasts to
the user population that a feature or release was available, and personal face-to-face
demonstrations by the developers. The mechanism of feedback for the general release was a
problem reporting system and electronic mail notes back to the developers. The mechanism
of feedback for the personal demonstrations were comments during the presentations and
observations of the users actions. While feedback from both methods was helpful, the personal
demonstrations had faster feedback and gave a better sense of the value of the feature being
demonstrated.

Users seldom took time out of their busy schedule to exercise a prototype or new release under
their own initiative. Unless a capability was absolutely needed to complete their tasks, we
received very little response from the user community. Even when the effort was planned as
peer review in their primary task, the self initiatec exercise of a prototype was too late to affect
development. The problem reporting and electronic mail feedback did provide a documented
trail of problems and a measurable item. But the nature of the reports and notes were too
detailed for prototype evaluation, and focused on errors and screen content. Serious problems
and alternative solutions generally did not appear in this method of feedback.

Face-to-face demonstrations were conducted in offices between developers and users, in
meetings with management and architects, in classroom environments, and at conferences to
a wide audience. Very little specific documented feedback resulted from these demonstrations,
but user impressions were important in evaluating the success of the prototype.

o Communications were difficult in the IR40 development team.

Part of the design and plan of the IR40 task was to experiment with distributed development
among locations, development environments, and system architecture. But because of this
distributed organization and structure, inadequate communications between the team members
was a problem. Tom Peters [Peters82] and Fred Brooks [Brooks75)] see communications as
the most critical clement in the success and excellence of a project. Our experience in the IR40
task agrees with their assertions.

We were not able to eliminate communications problems, but we did address the problem.
Our approaches to reduce communication problems were to

Use travel to the degree permitted in the contract,

Take advantage of other travel plans to coordinate our work,

Use conference calls, and

» Usc eiectronic maii, especially over phone lines via the repository system.

A key element in a software development cffort is the configuration management system. It
is a common notion that these systems help with project communications. Unfortunately,
because of the heterogeneous nature of the IBM STARS team network, configuration
management systems actually hurt sharing information an.d communication among the team
members. Each group within the team used locally available configuration management
methods. The manual import/export capabilities of these systems made it difficult for tcam
members outside the local group to review development.

Conclusions 14

Recommendations

In summary, the “lessons learned” can be stated in positive action statements as follows:
1. Repository Lessons

Describe the Repository from user views.

Establish guidance using support tools based on user views.

Define relationships between user guidance information.

Synchronize updates to user information.

Coordinate guidance with automated tools.

Publicize a glossary of Repository terms; supply a glossary with components.
Use reference pointers to information sources.

Plan for manual component evaluation, even with automated tools.

PR e a0 o

2. Reusable Component Lessons

a. Get the component author or owner involved in the submit process.
b. Seek an incentive for engineers to contribute their work products.

c. Pay special attention to component names and embedded names.

d. Supply compilation order information with components.

3. Software Development Life-Cycle Lessons

Clearly separate operational, development, and test environments.
Involved a large number of reviewers early in the development cycle.
Strive for consistent user interfaces.

Establish clear ownership of developed workproducts.

Apply quality assurance consistently, even in rapid iterative development.
Use controlled small group demonstrations.

Spend significant effort on communications within tiie development team.

e Ao o

a9

In addition, the development of the Repository and associated Guidebook has lead to the following
general recommendations.

¢ Spend more time with the users, or your user interface will be uninviting.
* Spend effort smoothing the contribution mechanism or you will not have anything to reuse.

¢ Put aside significant time and funds to populate the repository and evaluate components. Our
experience suggests about:

= lhr per simple component (component with no dependency on other components) for
submission to the repository.

« 4hrs per simple component for evaluation and filtering.

» 20hrs per simple component for certification.

Conclusions 15

B

References

The following is a list of references in this technical report in the order that they are cited. The
attached guides contain separate lists.

[IBM370]

[IBM380]

[DO2

[IBM1280]

[IBM1540]

[IBM460]

[Boeing330]

[Unisys340]

[IEEE729]

[SPCStyle]

[Peters§2]

[Brooks73]

References

IBM Systems Integration Division, Reusable Component Data Analysis, CDRL
Sequence No. 0370, February 10, 1989.

IBM Systems Integration Division, Consolidated Reusability Guidelines, CDRL
Sequence No. 0380, March 21, 1989.

United States Department of Defense, Electronic Systems Division USAF,
STARS Prime Contract - IBM Delivery Order 0002, April, 1989,

IBM Systems Integration Division, Program Administration Plan for STARS,
CDRL Sequence No. 1280, July 31, 1989.

IBM Systems Integration Division, Repository Guidebook (Draft), CDRL
Sequence No. 1540, September 14, 1989.

IBM Systems Integration Division, Repository Guidelines and Standards, CORL
Sequence No. 0460, March 17, 1989.

The Boeing Company, Repository and Security Plan, CDRL 0330, December
9, 1988.

Unisys Corporation, Reusability Guidelines Draft, CDRL 0340, February 16,
1989.

ICEE, Standard Glossary of Software Engineering Terminology, ANSI/IEEE
STD 729-1983, IEEE Standards Board, September 23, 1983.

The Softwre Productivity Consortium, Ada Quality and Style: Guidelines for
Professional Programmers, June 1989.

Peters, T. J. and R. H. Waterman, Jr., In Search of Excellence, Wamer Books,
1982.

Brooks, F. P., Jr., The Mythical Man-Month, Addison-Wesley Publishing
Company, 1975.

Bibliography

The following is a complete bibliography in alphabetic order for this technical report and the
attached guides.

STARS Documents
The Boeing Company, Documentation Requirements for A014 Type CDRLS, October 1, 1989.

The Boeing Company, Repository and Security Plan, CDRL 0330, December 9, 1988.

The Boeing Company, Repository User's Guide, March 7, 1989.

The Boeing Company, Standards and Guidelines for Repository, CDRL 0320, March 17, 1989.
The Boeing Company, STARS Repository Acceptance Criteria, July 21, 1989.

IBM Systems Integration Division, Consolidated Reusability Guidelines, CDRL Sequence No.
0380, March 21, 1989.

IBM Systems Integration Division, Consolidated Technical Development Plan for STARS
Competing Prime Contractors, CDRL Sequence No. 0070, November 11, 1989.

IBM Systems Integration Division, Draft Policies and Procedures, CDRL Sequence No. 1460,
January 19, 1990.

IBM Systems Integration Division, DTD Definition: Internal Documentation, CDRL Sequence
No. 0710, January 16, 1989.

IBM Systems Integration Division, Environment Capability Matrix, CDRL Sequence No.
0110, March 17, 1989.

IBM Systems Integration Division, /nformal Technical Report on Findings During the Rebuild
of Common Capabilities, CDRL Sequence No. 0340, February 19, 1989.

IBM Systems Integration Division, Long Term Configuration Management Plan for the
STARS Repository, CDRL Sequence No. 0520, March 17, 1989.

IBM Systems Integration Division, Practical Aspects of Repository Operations, CDRL
Sequence No. 1440, January 10, 1990.

IBM Systems Integration Division. Program Administration Plan for STARS, CDRL
Sequence No. 1280, July 31, 1989.

IBM Systems Integration Division, Quality Assurance/Configuration Management Plan, CDRL
Sequence No. 1320, October 20, 1989.

IBM Systems Integration Division, Repository Demonstration [nformal Report, CODRL
Sequence No. 1610, February 20, 1990.

Bibliography 17

IBM Systems Integration Division, Repository Guidebook (Draft), CDRL Sequence No. 1540,
September 14, 1989.

IBM Systems Integration Division, Repository Guidelines and Standards, CDRL Sequence
No. 0460, March 17, 1989.

IBM Systems Integration Division, Repository Operations and Procedures, CDRL Sequence
No. 1470, March 7, 1990.

IBM Systems Integration Division, Repository Prototype System Specification, CDRL
Sequence No. 1580, February 16, 1990.

IBM Systems Integration Division, Repository User’s Guide, January 9, 1990.

IBM Systems Integration Division, Reusability Guidelines, CDRL Sequence No. 0360,
December 17, 1988.

IBM Systems Integration Division, Reusable Component Data Analysis, CDRL Sequence No.
0370, February 10, 1989.

IBM Systems Integration Division, Taxonomy Report, CDRL Sequence No. 1580, January
19, 1990.

IBM Systems Integration Division, Version Description Document for the IBM STARS
Repository, CDRL Sequence No. 1600, January 31, 1990.

Naval Resarch Laboratory, STARS Foundations: Reusability Guidebook, September, 1986.
Unisys Corporation, Reusability Guidelines Draft, CDRL 0340, February 16, 1989.

United Statest Department of Defense, Electronic Systems Division USAF, STARS Prime
Contract - IBM Delivery Order 0002, April, 1989.

United States Department of Defense, Department of the Air Force, STARS Competing
Primes Lead Contracts Request For Proposal, F19628-88-R-0011, November 5, 1987.

Other Documenis and Articles

Aho, A. V., J. E. Hopcroft and J. D. Ullman, The Design and Aralysis of Computer
Algorithms, Readding, Mass.: Addison-Wesley, 1974.

Barnes, J.G.P., Programming in Ada, 2nd edition. Addison-Wesley Publishers Limited, 1984.
Bentley, J., “Programming Pearls,” Communications of the ACM, vol. 28, no. 7, July 1985.

Booch, G., Software Components With Ada. The Benjamin/Cummings Publishing Company,
Inc., 1987.

Brooks, F. P., Jr., The Mythical Man-Month, Addison-Wesley Publishing Company, 1975.
Burton, B. A., and others, “The Reusable Software Library,” [EEE Software, July 1987.
Embiey, D. W. and S. N. Woodficid, “Cohesion and Coupling tor Abstract Data Types,”
Proceedings, Sixth Phoenix Conference on Computers and Comynunications, Phoenix, Arizona,
February, 1987.

EVB Software Engineering, Inc., Creating Reusable Ada Software, 1987.

Goguen, J. A., “Reusing and Interconnecting Software Components,” Computer, February,
1986.

Bibliography 18

Goodenough, J. and others, Ada Reusability Guidelines, SofTech, Inc., April 1985.
IBM, Common User Access Advanced Interface Design Guide, SC23-4582-0, June 1989.

IEEE, Standard Glossary of Software Engineering Terminology, ANSI/IEEE STD 729-1983,
IEEE Standards Board, September 23, 1983.

Kemighan, B. W. and P. J. Plaugher, The Elements of Programming Style, Yourdon, Inc.,
1978.

LabTek Corp., Transportability Guideline for Ada Real-Time Software, U.S. Army HQ
CECOM Center for Software Engineering, April 24, 1989.

Matsumoto, Y., “Some Experiences in Promoting Reusable Software Presentation in Higher
Abstract Levels,” I[EEE Transactions on Software Engineering, vol. SE-10 (5), September 1984.

Matthews, E. R., Ada Exception Handling Seminar, IBM Systems Integration Division, May
1988.

Matthews, E. R., IBM Federal Systems Division Guide for Reusable Ada Components
(Draft), September 17, 1987.

Matthews, E. R., "Observations on the Portability of Ada 1/O”, ACM SIGAda Ada Letters,
vol. VII, no. 5, September/October 1987.

McDonnell Douglas Astronautics Company, “Overview and Commonality Study Results,”,
Common Ada Missile Packages (CAMP), ATATL-TR-85-93, May 1986.

Mcllroy, M. D., “Mass Produced Software Components,” Report on a conference by the NATO
Science Committee, Garmisch, Germany, October 7-11, 1968.

Mendal, Geoffrey Q., “Three Reasons to Avoid the Use Clause,” ACM SIGAda Ada Letters,
vol. VIII, no. 1, January/February 1988,

Merriam-Webster Inc., Webster's Ninth New Collegiate Dictionary, Springfield Mass., 1988.

Nielsen, K. W., “Task Coupling and Coheston in Ada,” ACM SIGAda Ada Letters, vol. VI,
no. 4, July/August 1986.

Nissen, J. and P. Wallis, Portability and Style in Ada, Cambridge University Press, 1984.
Pappas, F., Ada Portability Guidelines, SofTech, Inc., March 1985.
Peters, T. J. and R. H. Waterman, Jr., In Search of Excellence, Warner Books, 1982.

Peterson, A. S., "Coming to Terms with Terminology for Software Reuse,” Reuse in Practice
Workshop, 1989.

Pricto-Diaz, R. and P. Freeman, “Classifying Software for Reusability,” IEEE Software,
January, 1987.

Racine, R., “Why the Use Clause is Benelicial,” ACM SiGdda Ada Letters, vol. VIII, no. 3,

May/June 1988.

U.S. Department of Defense, Ada Joint Program Office, Rationale for the Design of the Ada
Programming Language, 1984.

U.S. Department of Defense, Ada Joint Program Office, Reference Manual for the Ada
Programming Language, ANSI/MIL-STD-1815A, February, 17 1983.

Bibliography 19

Rosen, J. P., “In defense of the “use’ clause,” ACM SIGAda Ada Letters, vol. VII, no. 7,
November/December 1987.

Rymer, J. and T. McKeever, The FSD Ada Style Guide, 1986.

Software Engineering Institute, "Reuse: Where to Begin and Why,” Affiliates Symposium, May

2-4, 1989.
SofTech, Inc. ISEC Portability Guidelines, Deceraber 1985.
SofTech, Inc. ISEC Reusability Guidelines, December 1985.

The Software Productivity Consortiutn, Ada Quality and Style: Guidelines for Professional
Programmers, June 1989.

Sommerville, 1., Software Engineering, 3rd. edition, Addison-Wesley, 1989.

St. Dennis, R., P. Stachour, E. Frankowski, and E. Onuegbe, “Measurable Characteristics of

Reusable Ada Software,” ACM SIGAda Ada Letters, vol. VI, no. 2, March/April 1986.

Stevens, W. P, G. J. Myers, and L. L. Constantine, “Structured Design,” IBM Systems
Journal, no. 2., 1974.

Bibliography

20

Acronyms

The following is a list of acronyms, abbreviations, and similar terms used in this technical report.
The attached guides contain separate lists.

Acronym

Ada

AdaMAT an Ada Metric Analysis Tool by Dynamics Research Corp.

AdaNET
ASR
CDRL
DID
DoD
IBM
IEEE
IR40
NRL
Oracle
RAPID
RFP
SAIC
SOwW
SpPC
STARS
VAX

Acronyms

Meaning

a DoD mandated programming language

a public domain Ada software reuse service

Ada Source Repository (also know as SIMTEL-20)
Contract Data Requirements List

Data Item Description

(United States) Department of Defense

International Business Machines

Institute of Electrical and Electronic Engineers

IBM STARS R-increment task for Repository Integration
Naval Research Laboratory

a commercial relational database product

an Army Ada reuse repository system

Request for Proposal

Science Applications International Corporation
Statement of Work

Software Productivity Consortium

Software Technology for Adaptable, Reliable Systems

a computer system from Digital Equipment Corporation
Verston Description Document

a proprictary operaiing sysiem for a VAX

21

Attachments

Attached are the STARS prime contract R-increment versions of the IBM STARS Repository
Guidebook, the STARS Reusability Guidelines, and the IBM STARS Repository User’s Guide.
We welcome all comments and suggestions that result from your review of this material. Your
input will help us achieve our goal of making these guides the primary reference source for users
and administrators of the Repository.

Attachments

22

Abstract

This technical report (CDRL Sequence No. 1550) addresses subtask TR40.1.1 (Guidclines, Procedures, and
Standards) of the STARS Delivery Order Task 1R40 (Repository Integration). It includes, as an
attachments, the IBM STARS Repository Guidebook, the STARS Reusability Guidelines, and the IBM
STARS Repository User’s Guide. This report presents the methods used and lessons learned in developing
the guides and the Repository. It is a revision of the draft Guidebook (CDRI, Scquence No 1540).
The Repository guides define

* How to use the IBM STARS Repository,

» Resources and capabilities of the Repository,

» Component standards for admission to and promotion within the Repository,

* Procedures for submission and usage of repository components,

* Processes involved in managing repository assets, and

» The reuse process in the context of the STARS repository.

Abstract 1

Preface

Due to its collective purpose and broad subject coverage, this report and the attached guides contain
contributions from numerous individuals and relics on the work presented in many other documents and
articles. Key among these are: Wendell Young and Gary Turncer, authors of earlier IBM STARS
documents; and all the developers in the IBM STARS IR40 tcam: Matt Biceri, Carol Ileymann, Pamela
Metcalf, Barbara Morck, Kyle Kennedy, Steve Kutoroff, Mike Puhlmann, and Tom Ward.

This report was originally scheduled to be completed on January 31, 1990, but duc to the allocation of
personnel to other STARS critical tasks and the cxtension of the STARS R-increment it was not completed
until April, 1990. The attached guides will be updated at the end of the R-increment extension to reflect the
final R-increment Repository.

This report was developed by the IBM Systems Integration Division, located at 800 North Frederick Ave.,

Gaithersburg, MD 20879. Questions or comments should be dirccted to the author, Robert W. Tikman at
(301) 240-6431, or to the IBM STARS Program Officc.

Preface 2

Repository Guidebook (Final)
Technical Report

July 2, 1990

Contract No. F19628-88-D-0032
Task IR40: Repository Integration
CDRL Sequence No. 1550

Prepared for:
Electronic Systems Division
Air Force Systems Command, USAF
Hanscomb AFB, MA 01731-5000

Prepared by:

IBM Systems Integration Division
800 North Frederick Ave.
Gaithersburg. MD 20879

Contents
AbStract . . L e e e 1
Preface e e 2
Introduction e e e e e 1
Identification 1
Purpose e e e |
Terminology : e)
Task Description e e .. 3
Information Sources oL L L e e 3
Guidebook Concept C e e 5
Organization/Structure e 5
Content e 6
Assumptions Lo e 7
Conclusions e e e 8
Lessons Learncd L e 8
Repository Lessons e e 8
Reusable Component Lessons L. 10
Software Development Life-Cycle essons 12
Recommendations i e e 1<
References e e 16
Bibliography e e e 17
ACFORYMIS 20
Attachments L 2]

Contents 11

Introduction

Identification

This technical report, IBM Contract Data Requircments List (CDRL) Sequence Number 1550, addresses
the Software Technology for Adaptable, Reliable Systems (STARS) Subtask 1R46.1: Functionality, as
defined in the STARS Prime Contractor, Delivery Order 2 [D02], 'Task IR40: Repository Integration, and
satisfies, in part, the IBM STARS Program Administration Plan [TBM1280], Subtask IR40.1.1: Guidelines,
Procedures, and Standards.

This report is a revision of the Repository Guidebook (Draft) MIBM1540*, which was delivered under the
same subtasks. Refer to the Program Administration Plan for a complete list of deliveries under the IR40
task and its subtasks.

This report follows the format requirements of MI1.-STD-847B, as spccified in the Technical Report Data
Item Description (DID) DI-S-3591/A.

Purpose

This report was prepared to satisfy the delivery requirements of the STARS IR40 Repository Integration
task and to provide a place to record the experiences gained from the task. The Guidebook, Guidelines, and
User’s Guide are attached as a separate stand-alone documents that can be distributed to users of the
Repository.

The guides are a collection of descriptions, procedures, and guidelines that covers all views of the IBM
STARS Repository, including system access, user rolcs, repository capabilities, component contributions,
component coding, and repository administration. The guidclines and procedures have been applied to the
IBM STARS team tasks during the STARS prime contract R-increment and will be applied to IBM
STARS tasks in subsequent increments.

Terminology

The following is a list of terms and definitions used in this report. An appreciation of these terms will help
in understanding the IR40 Repository Integration task. We have chosen to present them in a descriptive
order which supports the relationships between the terms and rermits serial reading.

component A collection of related work products to be used as a consistent set of information.
Software work products can include specifications, design, source code, machine code,
reports, compilation units, code fragments and other components. A component is
the focus of a repository and is intended to be reused. It is the primary type of object
found in a repository. Also referred to as an asset, or resource.

part An element of a component, such as design documents, source code, test information,
and data rights. Whilc a part may be copied or browsed, when stored in a repository
it is always associated with a component,

reuse 'The application of existing solutions, as captured in components, to a problem other
than the one for which they were originally built.

Introduction 1

repository

repository system

depository

organized repository

filtered repository

certified repository

reuser
supplier

librarian

topic specialist

filtering
gatckeeper

An element of the softwarc engincering environment in which software work products
and information about them are stored. Its primary purpose is to support the reuse of
components through a process of component submission and extraction. Also referred
to as a reuse library.

An instance of the softwarc engineering cnvironment, including computer hardware,
operating systems, software tools, standards, and procedures that together provide a
complete repository capability. These capabilitics include acquiring, storing, managing,
retrieving, and dispensing software work products and information about them to
potential reusers. A repository system may contain scveral repositories, cach dealing
with a different problem domain.

A repository or part of a repository whose contents are deposited as is, with few or no
constraints. A depository is primarily a storage facility. Quality and usability are
unpredictable; the burden is on the user to find and evaluate useful items.

A repository whose contents are documented and organized in a comprehensive
manner as components and parts. Finding, revicewing, and extracting components are
supported. The quality and usability remain unpredictable.

A repository whose components are subjecied to standards on form, content, quality,
and consistency. This is not a physical partition from the organized repository, rather
it is a documented higher level of confidence in an cxisting organized component.

A repository whose components cxhibit the highest level of confidence. A certified
component permits the proving of correctness in a solution that reuses the component.
Aspects of security, owncrship, distribution, and uscr set take on greater importance.

A person who reviews the contents of a repository and extracts components for reuse.
The common user of a repository. Also referred to as a user.

A person who places components into a repository. Also referred to as a contributor,
or submitter.

A person who coordinates, organizes, and controls the contents of a repository. Also
referred to as a system administrator, databasc administrator, or repository
administrator. This person frequently provides a first level help for other uscrs.

A person who is responsible for the evaluation of components and their promotion to
the filtered or certified status. This person is an expert in the repository domain and
has reviewed many of the components in the repository. Also referred to as a domain
expert, or technical consultant. This person frequently provides a second level help for
other uscrs, via reference from the librarian.

The act of evaluating components and promoting them to filtered status.

An automated capability that facilitates filtering.

These definitions are derived from definitions in scveral STARS Prime contract documents [1BM38(),
IBM460, Boeing330, Unisys340], and from scveral industry publications [1EE729, SPCStyle]. A complete
list of the IBM STARS Repository terminology is given in the Guidebook Glossary.

Using these terms, the IBM STARS Repository is defined as a repository system, that supports the reuse of
components in the domain of softwarc engincering environments. ‘The Repository contains a full suite of
capabilities and guidelines that are required by users of the system. The Repository supports multiple levels
of component confidence (depository, organized, filtered, and certified) and has facilitics to promote
components through these levels.

Introduction 2

Task Description

This report and attached guides are the results of efforts by members of the IBM STARS IR40 task team
over the eight month performance period of the task. We conducted numerous reviews, meetings, and
discussions on the material presented. We itcratively developed and evaluated operating prototypes to
experiment with ideas and validate approaches.

Several existing repositories were reviewed and exercised, including the Ada Source Repository (ASR.), the
AdaNET information service, the Boeing STARS Repository, and the Army RAPID component repository.
These systems provided insight into performance, content, and user issues.

Besides the producing these guides, our activities have

 Refined the state-of-the-art in repository and reuse technology,

* Improved our understanding of operational repository systems,

» Made our cxperiences available to government and industry through our dclivery items, and
* Established an operational repository to support future IBM STARS tasks.

Information Sources

The primary sources for this report and the attached guides were the IBM STARS documents: CDRL 380
Consolidated Reusability Guidelines [IBM380], CDRL, 460 Repository Guidelines and Standards [IBM460],
and CDRL 1540 Repository Guidebook (Draft) [IBM1540]. These documents were derived from several
older documents, some of which were reviewed again during this task. In addition, this report, the guides,
and the Repository development were influenced by numerous articles and papers on software reuse and
repository technology.

The following is a structured list of the information sources that were used during this task. Complete
references for the documents are in the Bibliography for this report. Copies of all the STARS documents
can be found in the IBM STARS Repository.

1. STARS Q-Increment Documerts

a. IBM
1) Task Q12
a) CDRL 460: Repository Guidelines
b) also, but of lesser importance:
i. CDRL 470: Repository System Plan
ii. CDRL 480: Demonstration Script
iii. CDRL 490: Demonstration Results
iv. CDRL 500: Repository Specifications
v. CDRL 510: Repository Implementation Report
vi. CDRL 520: Repository Configuration Control Plan
vii. CDRI, 530: Prototype Repository Implementation
2) Task Q3
a) CDRL 110: Environment Capabilities (included CDRI, 100: Matrix, and CDRI, 90:
Requiremen.s)
3) Task Q9
a) CDRL 380: Reusability Report (included CDRI, 370: Analysis, and CDRL 360: Guidelines)
b. Boeing
1) Task QI2
a) CDRI, 320: Repository Guidelines
b) also, but of lesser importance:
i. CDRL 330: /nitial Capabilities

Introduction 3

ii. CDRL 380: Configuration Control
iti. CDRL 400: Repository Report
iv. CDRL 420: Demonstration Plan

c) peer review of:
i. IBM Task Q3 CDRL 100
ii. IBM Task Q9 CDRL 380

c. Unisys
1) Task Q9
a) CDRL 340: Reusability Guidelines

2. STARS R-Increment Documents

. Task IR40: Repository Integration Proposal

. Task IR40 CDRL 1540: Repository Guidebook (draft)

. Task IR40 CDRL 1580: Taxonomy Report

. Task IR40 CDRL 1590: Repository Prototype Specifications

. Task IR40 CDRL 1600: Repository Version Description Document
. Task IR40 CDRL 1610: Repository Demonstration

. Task IR10 CDRL 1440: Repository Operations

. Task IR10 Repository User’s Guide

. Task IR11 CDRL 1460: Repositary Policy and Procedures

. Task IR11 CDRL 1470: Repository Operations and Procedures

3, Other IBM Documents

a. IBM Systems Integration Division QOwego Reusability Guidelines
b. IBM Systems Integration Division work in reusc and repositorics
c. IBM Corporate work in reuse and repositorics

e 23 0Q -0 RO o'

e

4. Other Key Documents

a. Software Productivity Consortium (SPC) Ada Style Guidelines
b. Naval Research Laboratory (NRL) Reusability Guidelines
c. SoftTech Reusability and Portability Guidelines

5. Tools/Product/System Documentation

a. VAX/VMS
b. AdaMAT
¢. Oracle

d. ASR

e. RAPID

f. AdaNET

6. Miscellancous

a. IBM STARS Program Office notes
b. Developer’s notes

c. Feedback from reviewers

d. Operational repository procedures

Introduction

4

Guidebook Concept

The goal for the Guidebook is to define the reuse process and gather in onc place il the references,
standards, guidelines, and procedures related to the operation and usc of the IBM STARS Repository. The
Guidebook and related guides will be handed out to software enginecrs who want an introduction to the
Repuository and will be using the system. The guides will be stored in clectronic form on the Repository
system.

Organization/Structure

The Guidebook was prepared in separable parts to assure accessibility and cenvenient use. The arrangement
of its constituent parts is a matter of practicality, dictated by the source of the information.

The Guidebook has become a suite of documents, with the Guidebook at the center. This technical report
is considered a ‘preface’ to the Guidebook and not required by any Repository user. The Reusability
Guidelines were scparated from the Guidebook to provide guidance for component developers. The User’s
Guide was also made separate from the Guidebook to permit changes in operational aspects of the
Repository, without republishing the complete guidebook.

The Guidebook and its related guides are living documents. Fach part has a potential for change based on
its relationship to the Repository system and reusc as practiced by the IBM STARS team. Updates will be
prepared as these changes dictate.

Guidebook Technicol Report

ottochments

Guidebook Body —

Appendix A referance to other
documents, system
Appendix B help, ond text files

Appendix C _—

User's Guide e e o o]

Reusability Guidelines -

Figure 1. Graphic Model of the Guidebook Parts

In organizing the body of the Guidebook, we considered seve. .l dimensions or views of the Repository and
the reuse practices. These included:

Guidebook Concept S

+ the roles of system users (reuser, supplier, administration)
+ repository levels (organized, filtered, certified)

¢ requirements for entry and promotion

+ procedures to be followed

+ system design and architecture

From discussions of these alternatives, we decided that the roles dimension was the best way to present the
material, and that roles would be the focus of the body of the Guidebook. The other views tended to have
long lists of detail and did not help the user in organizing their approach to reuse. The other views are
presented in the appendices or by references to other material.

Content

The Repository Guidebook defines
» Resources and capabilities of the STARS Repository,
« Procedures for submission and usage of repository components,
« Standards for promotion of components within the Repository,

« The processes involved in managing repository asscts, including component configuration management,
problem tracking, promotion, and cntry and exit critcria, and

« The reuse process in the context of the STARS repository, covering the admission, adaptation,
integration and testing of reusable components, as well as methods for locating and selecting reusable
components.

While producing the Guidebook, reviewers asked for many topics to be included. We realized that
attempting to cover all of them would be difficult, but we also felt that most of the request were real needs
for some part of the user population. The challenge was to organize the material and structure the
documents to give an meaningful impression of the repository, while prescrving enough detail to be helpful
for a particular user with a specific problem.

The following is the list of topics we addressed in this task and where we decided to place it.

Guidehook Concept

6

Guidebook material

people roles and activities
glossary

definitions

references

acronyms

relationship to STARS tasks
guidebook concept

assumptions

lessons learned

bibliography

summary of resources and services
gate definitions (filter list)
user directions

coding guidelines for reusability
operational policies of our system
data requirements and database tables
help information

system screen images

how to do reuse

where reuse fits in 1ifecycle
configuration management

access security

Location

body

body, report

body, report

body, report

report

report

report

report

report

appendix

appendix

appendix, attachment
appendix, attachment
appendix, reference
reference

reference

reference

reference

reference

reference

reference

Assumptions

The following assumptions pertain to the guidelines and procedures presented in the Guidebook.

The Guidebook and associated guides support reuse within the context of a software intensive project.
They may be used to establish a starter sct of guidelines, but docs not form a complete set. Your
project should modify and augment these guidclines to address domain and system specific issues.

Issues of security, proprictary rights, and component ownership are beyond the scope of this version of
the Guidebook, but may be found in referenced documents.

The coding guidelines are directed primarily toward Ada softwarc engineering. While some guidance
may apply to a broader class of components, the focus is on Ada software. The guidelines can thus treat
specific aspects of Ada that relate to reusability.

No assumptions are made about design methodology and relationships to reuse.

Reuse is assumed to include tailoring of reusable components. It is likely that a significant amount of
reuse will involve some tailoring of the component code. Thus, there are guidelines to promote
tailorability. Note that tailoring should be distinguished from the broader term maintenance, which not
only includes tailoring but also includes the idea of corrective maintenance (fixing bugs).

Guidebook Concept 7

Conclusions

The IBM STARS IR40 task team has worked for nine months developing the prototype repository system
that is documented by the Guidebook. The team has included up to ten cngincers, in three different
locations, developing the system on several different platforms. The team developed four releascs of the
system following an iterative refinement prototyping method. The experience gained during this task is the
basis for the conclusions in this report.

Lessons Learned

Several situations arose during the writing of the Guidcbook and the development of the Repository which
we believe contain “lessons learned” that could be applicd by the greater software development community.
We have collected these lessons and classified them according to software engincering technology areas. In
many cases, the lessons were previously stated in draft documents and status reports. Our purpose in this
report is to gather all the IR40 team lessons learned into one place.

The lessons are stated as a recognized problem or situation, followed by our obscrvations on the problem, an
implemented solution, or alternative potential solutions.

Repository Lessons

At a high level, developing a repository has issues and design similar to the development of any on-line
application with a large database. But when you consider a repository system as a special element in a
software engineering environment, unique problems appear.

From an object-oriented view, the life-cycle of objects in a repository is similar to the life-cycle of objects in
a software engineering configuration management system. The differences are that the repository objects are
less frequently updated, that there are weaker relationships between the objects, and that ownership is harder
to establish. A software engineering environment deals with objects as a project library, while a repository
deals with objects as a public library.

o It is hard to describe the Repository due to the varying experiences of the users and the different roles
they play in the reuse paradigm.

The critical information in a repository can be viewed from many different perspectives. For example,
the coding guidelines can be viewed from the perspective of the developer of reusable components, the
submitter who presents the component for admission to the Repository, the topic specialist who
analyzes the component, and the reuser who cxtracts the component from the Repository. The
developer follows the guidelines in creating the initial work product. ‘The submitter and topic specialist
reference the coding guidelines to confirm that they have been adequately followed. The reuser will want
to know what coding guidelines are preferred and supported by the repository to facilitate the usability
analysis.

To address this situation, we organized the body of the Guidebook based on user roles. We also
organized the Repository capabilities based on user roles. This organization is apparent in the selection
menus and the system design.

o There were few aids to make it easy to follow guidelines and there were no aids that support different user
roles.

Each role is defined with a sct of procedures which generally refer to one or more sets of guidelines. The
guidelines are often too extensive or too broad for regular reference. We found that checklists can be
used to promote consistency and completeness and to customize guidclines and procedures to a
particular cnvironment or application. The checklists made it possible to provide a single set of general

Conclusions 8

guidelines and use the more succinct checklist to place emphasis on the important guidance. For
example, the coding guidelines are customized for the component developer by the coding guidelines
checklist. Further customizing could be achicved by providing portability and reusability checklists
which emphasize those coding guidelines that topic specialists should consider in evaluating a component
for admission to the repository.

The relationships between Guidebook information, its sources, and users are complex.

The intellectual, physical, and temporal relationships among the Guidebook information, its sources, and
its users are quite complex, making it difficult to provide the information in a meaningful and
manageable manner. It scems ciear at this point, that the CDRI. delivery mechanism is not the
complete answer, since the information in deliverics, as a whole, changes continuously. The
fundamental problem is the paradox that specific information is both more useful to Repository users
and more volatile than more general information. For example, the names of individuals identified as
points of contact or assigned to other roles are more likely to change than the role abstraction.

The potential users of the information contained in this Guidebook are many and diverse. For this
information to be used, it is necessary to achicve scveral goals. It must be provided accurately, when it
is needed, where it is needed, in a form that is mcaningful to the user of the information, and in a
manner that is as unobtrusive as possible. Indications (such as time-stamp or version number) should
also be provided to give the user confidence that the information is as timely and accurate as it needs to
be. This implies that information updates must be rapidly disseminated to end users. Ways must be
found to improve the packaging and delivery of the Guidcbook and its information content.

It was difficult to synchronize updates to information, even when a direct relationship was understood.

Information sources also influence the packaging objectives for the information since it is desirable
(though not necessary) for information provided by a given source to be (logically) co-located and for
updates to occur as atomic operations to ensure the continuing validity of the complete document.

This becomes increasingly important as various manual functions are automated. We have used
information modelling techniques to develop our understanding of the relationships and predict the
synchronization problems.

The development guidelines, on-line definition of the guidelines, and the automation of component review
regarding the guidelines were difficult to coordinate.

In establishing a complete repository, we developed guidelines for components and procedures for the
component life-cycle within the Repository. Thesc guidelines and procedures appeared in several places,
such as the Guidebook, on-linc help, and rules for Ada code metric analysis. In addition, they were
refined and modified over time.

This situation made it difficult to coordinate the guidelines development. At times the guidance in one
place contradicted the guidance in another placc. By the end of the R-increment, we believe most of the
irregularitics have been addressed, but we have not established an casy way to keep the guidance
coordinated and get a reasonable level of consensus.

An undefined glossary made documentation, discussions, and component evaluation difficult.

In the Repository, we needed to distinguish terms from their more general English definitions. We
constructed a structure of terms and classifications within those terms, but we had difficulty in
communicating our meanings.

We found many competing definitions for the same words. Similar type work in reuse and repositories
is being conducted by many organizations and they have published their glossarics. Thesc definitions
overloaded our definitions and caused misunderstanding. TFurther, we contributed to the confusion due
to our own refinement and claboration of our definitions over time. These problems are not unusual in
leading-edge efforts, but they are areas for concern and require attention.

Our answer to the terminology problems was 1o include our definitions in scveral key documents and
reports. We reviewed some of the competing glossary lists and adopted their definitions where

Conclusions 9

appropriate. But in the end, we were left with a set of definitions that work for us, but are neither “fish
nor fowl” in any official world.

A similar issue appeared when reviewing documentation for software components. For example, it was
difficult to understand and evaluate the “Dates” software package without a good understanding of
horological terms, such as Julian date.

To answer the component understanding problem, we have suggested that components contain a
glossary of keywords in all related documentation. There is a direct relationship between the
documentation of the component glossary and the readability of the declarative section of the code.

» The linear nature of hard-copy documents does not translate to on-line review very easily.

Books, manuals, and other hard-copy documents are inherently linear in physical organization. This
results in difficult choices: Is it better to repeat textual information at the risk of annoying the reader
who encounters repeated text, or is it better to provide references among the singular instance of a unit
of text much like is done in an encyclopedia, putting the burden of locating the information on the
reader?

In the Guidebook, we chose the reference approach. This choice also reduced the maintenance and new
material problems, much like subunits in a programming language.

Some alternatives to the linear organization arc network links between material as implemented in
hypertext systems, and hierarchy tree models as implemented in many on-line help systems. These
alternatives are desirable organizations for the Repository information system, but were displaced by
more important tasks.

» Automated component evaluation was only partially successful.

We attempted to construct an automatic filter for components going into the Repository and for
evaluation of components within the the Repository. We found it time consuming and difficult to
construct these automatic filters, and we found that they ultimately would only do part of the job.

To evaluate the compilation status of a component, the bulk of the effort was consumed by review of
the compilation order information, location of external packages and libraries, and similar type tasks.
Running the compiler was trivial, and automation of just thc compilation step did not save much effort.

The review of documentation was all manual. We were not able to locate or build any tool to help with
documentation evaluation. Because of the variety of documentation standards and styles, it is unlikely
this area will be automated soon. There are some tasks, such as grammar and spelling checks, that can
be supported by tools, but they do not help with the evaluation of documentation completeness.

Review of Ada code was partially automated with the help of the tool AdaMAT, by Dynamics Research
Corporation (DRC). This tool gave us counts of constructs that arc considered “good” against a count

of where the construct could have been used. ‘The AdaMA'T reports helped to suggest places and issues
to review, but could not substitute for human inspection of the code.

Reusable Component Lessons

We populated the IBM STARS Repository with hundreds of componcents and thousands of related parts.
This population task was usually accomplished by system administrative engineers, and occasionally by the
component authors.

Some of the following lessons may seem obvious and the answers may appear to be the application of rigor
and management techniques. But this is the arca where we had the least success. We originally planned to
have many more components and parts in the final repository. Every time we sat down to really build up
the repository content, other things got in the way. The databasc structurc kept changing, the submit
mechanism was too hard to use, or the task was just too boring and labor intensive.

Conclusions 10

The following lessons present major issues from our evaluation of the problems in repository content
management.

1t is difficult to successfully and completely contribute a component from a third party.

The process of organizing the components in a repository is more difficult when the components are
extracted from a source, rather than submitted by a supplier. For cxample, some of the components
from the Ada Source Repository (ASR) have been organized on the IBM STARS repository. These
components took much longer to organize than the components submitted by the STARS prime
contractors, because the ASR librarian was not involved in meeting the IBM STARS repository entry
requirements. On the other hand, some of the STARS prime components were well known by the
people doing the entry to repository, and the time required to organizce them was significantly less.

This observation led us to put a greater emphasis on having the component author do the submission to
the repository. The person who knows the most about a component is its author, and the repository
submit process should take advantage of this knowledge. The submit process must be easy to use,
capturing a large amount of information, which would be harder to acquire later on. A clear but not
extensive set of guidelines and procedures must be established, and they must be supported by the
system capabilities, especially at the component entry time.

This observation also leads us to question the valuc of third party repositorics that are currently
available, such as the ASR, AdaNET, and the Ada Information Clearinghouse. These systems freely
pass along components and information, and they support gencral communications, which is much
needed in the Ada technology community. But without the cxplicit involvement of the authors in the
cataloging and depositing of the components, the confidence is lowered in the ownership, completeness,
and currency of the component. And confidence in the extracted component is significant in the success
of reuse.

There is little incentive for ¢ igineers to contribute their work products to a repository outside their current
project.

This lesson is not new. We have just recognized it again, and we want to reiterate the problem. A good
reuse repository must contain some incentives that make people want to supply components for reuse.
Further, our observations revealed that components that do not have the force of an incentivized
supplier behind them, are probably not good candidates for a reuse repository.

While not being terribly successful, we have attempted to place a repository submission subtask in all
major tasks. The concept is that one of the measurements in completing a task is the submission of
reusable components out of the task’s workproducts into the repository. This is the model that we will
follow in future IBM STARS tasks.

A major disincentive to engineers in our repository model is the cffort required to contribute a
component. It takes as much as four hours to contribute a modcrate size component. This seems
excessive, but we believe it is justificd. The effort to supply components is inversely proportional to the
effort to reuse, and a primary objective of a repository system is to reduce the effort to reuse. A balance
is required between the two efforts. A factor in this balance is the realization that supply is a one-time
effort and reuse is a recurring effort. Fach reusc increases you return on supply cost investment.

The names of components and the names within components confused the repository administration and
reusers.

Contributors frequently used names that arc only meaningful to their environments. The names may be
imbedded in their contributions and don’t “flow through” to the repository system, or to the reuser’s
devclopment system.

This problem has became morc apparent during final reviews of the Repository code and the Repository
content. It can be a serious inhibitor to softwarc reusc.

We have established name guidance for the Repository development to reduce this problem. The initial
guidelines are in the Guidebook. We anticipate refinement of these guidelines and additional guidelines
as we learn more about the problem. '

Conclusions 11

o Software components without compilation order information are almost useless for the reuser.

This lesson may seem obvious, but some contributions to our repository (and many contributions to
other repositories) have not included compilation order information. The submitter assumes the
component is simple enough, such that anyone could compile it, or they rely on the naming convention
to indicate compilation order. In some cases, it may be acceptable, but the absence of the compilation
order information almost always causes confusion.

Our guidelines require compilation order information and it is part of the evaluation process followed by
the topic specialists. We do not bar contributions without compilation order information, but the
components without it will unlikely make it to the filtered state.

o It is difficull to store assets independent of a repository data base.

During the extension to the R increment, an attempt was made to store components in tagged SGML
files, and then use a Load tool to store the components in the STARS data base. The purpose was to
develop a repository-independent format for components. The information model for a specific release of
the repository could change, but the old assets in SGML format could be rcloaded by a modification to
the load tool. The concept of saving assets in an SGMI. format also was thought to have use for
exchanging assets between repositories.

The flaw in the idea was that assets referenced other assets, and assets referenced other information in
the repository, such as facet term, organization, and owner name. In order for the asset to be
independent of a repository, all this information has to be carried along with the asset. This information
is very voluminous, and would cause asset load time to be excessively long.

Software Development Life-Cycle Lessons

During the development of the IR40 prototype repository system, we followed a rapid iterative refinement
methodology. We did not follow the conventional ‘vaterfall life-cycle, rather we followed the emerging
software-first life cycle. We eliminated almost all “standard” documents and took many shortcuts in order to
produce the greatest amount of operating prototype capability in the shortest time. We wanted to produce
the “look and feel” of a repository, based on a general environment architecture, with standard interfaces, all
running on real data in a significantly populated databasc.

We believe the process we followed was acceptable and produced a cost effective repository system. We plan
to continue to experiment with this process in future IBM STARS tasks.

We anticipated most of the problems we encountered, since we recognized our deviation from the norm, but
we were surprised at how much effort and time was required to address them. There was always a strong
feeling to stay with whatever we had, in both software and methods. ‘There was a continuous and uneasy
balance between resources available and planned tasks.

» Operational, development, and lest environments interfered with each other.

The Repository not only was developed in several locations and on several platfoims, but also contained
several parts which did not come together until we build an operational system, such as the database,
menu system, and scarch mechanism. This is not unique to this project, but it did cause stress on the
development cycle.

We had to develop multiple databases, and populaic them several times. Scparate test environments
needed to be maintained to allow testing to proceed without disruption of the existing repository data
base.

We developed several layers of the architecture simultancously. To accomplish this, we copied
significant amounts of source code into scveral development environments. Fach environment had
naming restrictions which forced us to use different naming patterns for the same source elements.
These duplicate systems created a versioning maintenance problem. This also lowered our confidence
with the final product, because we could not guarantee that the migrated clements were unmodified.

Conclusions 12

Too few people tried the system too late for changes.

The development model we followed called for frequent exccution of the evolving system by a wide user
population. We accomplished this through full system rcleascs to the STARS community and partial
prototypes for a narrow set of users. We cither demonstrated the prototype or asked the user to
experiment with it by themselves. We capturcd remarks from demonstrations and problem reports from
individual users, as our feedback mechanism.

The problem we had was in striking a balance between preparing clean prototypes for a large set of users
and rapid prototypes for a controlled group. Even though we maintained operational parts of the system
throughout the task period, it still took significant efforts to put together fully operational systems.
Complete systems were needed for the uscr to experience and appreciate the sct of capabilities. In some
cases, we put together partial systems which demonstrated particular idcas. These prototypes proved
useful, but only to a small set of intimatcly involved users.

We did not uncover any simple way to approach this balancing effort. Just continual attention to the
basics of rapid prototyping is all we can offer as a lesson. Rapid iterative development is more successful
if early prototype capabilitics can be made available to a wide sct of experienced users who have access
to immediate and easy to use feedback mechanisms.

The Repository user interfaces were not consistent among embedded tools.

Rapid prototyping and intcgration frequently leads to systems with “bumpy” user interfaces. In
constructing a rapid prototype, you must recusc components that were written for widely different
situations. The user interfaces that accompany these components arc usually inconsistent. They were
written to take advantage of the perceived users expericnce and operational system. If, when searching
for reusable components, you stay only within a single domain and platform, you will reduce this
problem, but you will not be able to take advantage of other reuseable components. The development
cycle becomes a trade-off between capability, usability, and time.

During the development of the Repository, we concentrated on the balance between capability and
usability. We attempted to extend the system capability with less regard for usability. This approach
was helpful in developing the overall architecturc and design, but when it came time to demonstrate the
systen, we discovered usability problems. The problems with usability caused us to lose “user hours”
and reduced the feedback on the prototype, and thus reducing the benefit of this life-cycle.

Parts of the Repository system did not have clear ownership.

The final operational Repository is not a single unit, but rather a collection of executables, held together
by a menu selection mechanism, relying on a databasc for much of the display window content.
Included in the Repository are the Guidebook, guidclines, and numerous help screens. A significant
amount of material was reused from the STARS Q-increment and incorporated into the Repository
system. Furthermore, over the repository development period, there was considerable turnover in the
IR40 team. These facts lead to situations in which there was uncertain ownership of elements of the
Repository system.

While the ownership problems were cleared up by the end of the R-increment, it was a noteworthy issuc
during development. Without clear ownership, rapid development can get out-of-hand. Effective
configuration management methods should be used to get the most out of iterative development. When
you reuse material that does not have clear ownership, you must be willing to take on ownership. You
need to be concerned with ownership of guidclines and procedures to the same level as owncrship of
softwarc.

Quality assurance was not consistent or occurred too late.

Even in a rapid prototype development cycle, as performed by the IR40 tcam, an independent quality
assurance audit needs to be conducted. The audits conducted on the Repository system, brought forth
scveral potential problems that were taken care of before reaching the users. But the development cycle
used on the Repository did affect the quality assurance tasks.

Conclusions 13

The timeliness of the quality assurance tasks was a problem. Frequently, we were well into the next
iteration before the assurance tasks were complete. The system had matured and obviated many of the
reported problems.

The second problem we had was consistency across the multiple sites and development platforms. Each
group had their own way of handling quality assurance. The pressure to develop and den.onstrate
quickly, as called for in a rapid development «vcle, dictated that we skip a more complete and orderly
approach.

User initiated demonstrations were not effective.

Two methods were used to get reviews of the Repository prototypes: general broadcasts to the user
population that a feature or releasc was available, and personal face-to-face demonstrations by the
developers. The mechanism of feedback for the general release was a problem reporting system and
electronic mail notes back to the developers. 'The mechanism of feedback for the personal
demonstrations were comments during the presentations and obscrvations of the users actions. While
feedback from both methods was helpful, the personal demonstrations had faster feedback and gave a
better sense of the value of the feature being demonstrated.

Users seldom took time out of their busy schedule to exercise a prototype or new release under their
own initiative. Unless a capability was absolutely nceded to complete their tasks, we received very little
response from the user community. Even when the cffort was planned as peer review in their primary
task, the self initiated exercise of a prototype was too late to affect development. The problem reporting
and electronic mail feedback did provide a documented trail of problems and a measurable item. But
the nature of the reports and notes were too detailed for prototype evaluation, and focused on errors and

screen content. Serious problems and alternative solutions generally did not appear in this method of
feedback.

Face-to-face demonstrations were conducted in offices between developers and users, in meetings with
management and architects, in classroom environments, and at conferences to a wide audience. Very
little specific documented feedback resulted from these demonstrations, but user impressions were
important in evaluating the success of the prototype.

Communications were difficult in the IR40 development team.

Part of the design and plan of the IR40 task was to experiment with distributed development among
locations, development cnvironments, and system architecture. But because of this distributed
organization and structure, inadequate communications between the team members was a problem.
Tom Peters [Peters82] and Fred Brooks [Brooks75] sec communications as the most critical element in
the success and excellence of a project. Our cxpericnee in the TR40 task agrees with their assertions.

We were not able to climinate communications problems, but we did address the problem. Qur
approaches to reduce communication problems werc to

— Use travel to the degree permitted in the contract,

— Take advantage of other travel plans to coordinate our work,

— Use conference calls, and

— Use electronic mail, especially over phone lines via the repository system.

A key element in a software development cffort is the configuration management system. Itis a
common notion that thesc systems help with project communications. Unfortunately, because of the
heterogencous nature of the IBM STARS team network, configuration management systems actually
hurt sharing information and communication among the tcam members. Fach group within the team
used locally available configuration management methods. The manual import/export capabilities of
these systems made it difficult for team members outside the local group to review development.

Conclusions 14

Recommendations

In summary, the “lessons learned” can be stated in positive action statements as follows:
1. Repository Lessons

Describe the Repository from user views.

Establish guidance using support tools based on user views.

Define relationships between uscr guidance information.

Synchronize updates to user information.

Coordinate guidance with automated tools.

Publicize a glossary of Repository terms; supply a glossary with components.
Use reference pointers to information sources.

Plan for manual component evaluation, even with automated tools.

PR mo oo O

2. Reusable Component Lessons

a. Get the component author or owner involved in the submit process.
b. Seek an incentive for engineers to contribute their work products.

c. Pay special attention to component names and embedded names.

d. Supply compilation order information with components.

3. Software Development Life-Cycle Lessons

a. Clearly separate operational, development, and test eavironments.

b. Involved a large number of reviewers carly in the development cycle.

c. Strive for consistent user interfaces.

d. Establish clear ownership of developed workproducts.

. Apply quality assurance consistently, even in rapid iterative development.
f. Use controlled small group demonstrations.

g. Spend significant effort on communications within the development team.

o

In addition, the development of the Repository and associated Guidebook has lead to the following general
recommendations.

* Spend more time with the users, or your user interface will be uninviting.
» Spend effort smoothing the contribution mechanism or you will not have anything to reuse.

» Put aside significant time and funds to populate the repository and evaluate components. Our
experience suggests about:

— 1hr per simple component (component with no dependency on other components) for submission
to the repository.

~ 4hrs per simple component for cvaluation and filtering.

— 20hrs per simple component for certification.

Conclusions 15

References

The following is a list of references in this technical report in the order that they are cited. The attached
guides contain separate lists.

[IBM370]

[IBM380]

[DO2]

[IBM1280]

[IBM1540]

[1BM460]

[Boeing330]
[Unisys340]

[IEEET29]

[SPCStyle]

[Peters82]

[Brooks75]

IBM Systems Integration Division, Reusable Component Data Analysis, CDRL Sequence
No. 0370, February 10, 1989.

IBM Systems Integration Division, Consolidated Reusability Guidelines, CDRL Sequence
No. 0380, March 21, 1989.

United States Department of Dcfense, Electronic Systems Division USAF, STARS Prime
Contract - IBM Delivery Order 0002, April, 1989.

IBM Systems Integration Division, Pragram Administration Plan for STARS, CDRL
Sequence No. 1280, July 31, 1989.

IBM Systems Integration Division, Repository Guidebook (Draft), CDRIL, Sequence No.
1540, September 14, 1989.

IBM Systems Integration Division, Repository Guidelines and Standards, CDRL Sequence
No. 0460, March 17, 1989.

The Boeing Company, Repository and Security Plan, CDRL 0330, December 9, 1988.
Unisys Corporation, Reusability Guidelines Draft, CDRI, 0340, February 16, 1989.

IEGE, Standard Glossary of Software Engineering Terminology, ANSHIEEL STD
729-1983, IEEE Standards Board, September 23, 1983.

The Softwre Productivity Consortium, Ada Quality and Style: Guidelines for Professional
Programmers, June 1989.

Peters, T. J. and R. H. Waterman, Jr., In Search of Excellence, Warner Books, 1982,

Brooks, F. P, Ir., The Mythical Man-Month, Addison-Wesley Publishing Company, 1975.

References 16

Eibliography

The following is a complete bibliography in alphabctic order for this technical report and the attached
guides.
STARS Documents
The Boeing Company, Documentation Requirements for A014 Type CDRLS, QOctober 1, 1989.
The Boeing Company, Repository and Security Plan, CDR1, 0330, December 9, 1988.
The Boeing Company, Repository User's Guide, March 7, 1989,
The Boeing Company, Standards and Guidelines for Repository, CDRI. 0320, Marck 17, 1989.
The Boeing Company, STARS Repository Acceptance Criteria, July 21, 1989.

IBM Systems Integration Division, Consolidated Reusability Guidelines, CDRI, Sequence No. 0380,
March 21, 1989.

IBM Systems Integration Division, Consolidated Technical Development Plan for STARS Competing
Prime Contractors, CDRI, Sequence No. 0070, November 11, 1989.

IBM Systems Integration Division, Draft Policies and Procedures, CDRI, Sequence No. 1460, January
19, 1990.

IBM Systems Integration Division, DTD Definition: Internal Documentation, CDRI, Sequence No. 0710,
January 16, 1989.

IBM Systems Integration Division, Environment Capability Matrix, CDRL Sequence No. 0110, March
17, 1989.

IBM Systems Integration Division, Informal Technical Report on Findings During the Rebuild of
Common Capabilities, CDRL Sequence No. 0340, Iebruary 19, 1989.

IBM Systems Integration Division, Long Term Configuration Management Plan for the STARS
Repository, CDR1, Sequence No. 0520, March 17, 1989.

IBM Systems Integration Division, Practical Aspects of Repository Operations, CDRI Sequence No.
1440, January 10, 1990.

IBM Systems Integration Division, Program Administration Plan for STARS, CDRL Sequence No.
1280, July 31, 1989.

IBM Systems Integration Division, Quality Assurance/Configuration Management Plan, CDRI. Sequence
No. 1320, October 20, 1989.

IBM Systems Integration Division, Repository Demaonstration Informal Report, CDRI, Sequence No.
1610, February 20, 1990.

IBM Systems Integration Division, Repository Guidebook (Draft), CDRI, Sequence No. 1540,
September 14, 1989.

IBM Systems Integration Division, Repository Guidelines and Standards, CDRI, Sequence No. 0460,
March 17, 1989.

IBM Systems Integration Division, Repository Operations and Procedures, CDRI, Sequence No. 1470,
March 7, 1990.

IBM Systems Integration Division, Repository Prototype System Specification, CDRL Sequence No.
1580, February 16, 1990.

IBM Systems Integration Division, Repository User's Guide, January 9, 1990

Bibliography 17

IBM Systems Integration Division, Reusability Guidelines, CDRI, Sequence No. 0360, December 17,
1988.

IBM Systems Integration Division, Reusable Component Data Analysis, CDRL, Sequence No. 0370,
February 10, 1989.

IBM Systems Integration Division, Taxonomy Report, CDR1, Sequence No. 1580, January 19, 1990.

IBM Systems Integration Division, Version Description Document for the IBM STARS Repository,
CDRL Sequence No. 1600, January 31, 1990.

Naval Resarch Laboratory, STARS Foundations: Reusability Guidebook, September, 1986,
Unisys Corporation, Reusability Guidelines Draft, CDRI. 0340, February 16, 1989.

United Statest Department of Defense, Electronic Systems Division USAF, STARS Prime Contract -
IBM Delivery Order 0002, April, 1989.

United States Department of Defense, Department of the Air Force, STARS Competing Primes Lead
Contracts Request For Proposa., '19628-88-R-0011, November 5, 1987.
Other Documents and Articles

Aho, A. V., J. E. Hopcroft and J. D. Ullman, The Design and Analpsis of Computer Algorithms,
Readding, Mass.: Addison-Wesley, 1974.

Bames, J.G.P., Programming in Ada, 2nd edition. Addison-Wesley Publishers Limited, 1984,
Bentley, J., “Programming Pearls,” Communications of the ACM, vol. 28, no. 7, July 1985.

Booch, G., Software Components With Ada. The Benjamin/Cummings Publishing Company, Inc.,
1987.

Brooks, F. P., Jr., The Mythical Man-Month, Addison-Wesley Publishing Company, 1975.
Burton, B. A,, and others, “The Reusable Softwarc Library,” IEEE Software, July 1987.

Embley, ID. W. and S. N. Woodfield, “Cohesion and Coupling for Abstract Data Types,” Proceedings,
Sixth Phoenix Conference on Computers and Communications, Phocnix, Arizona, February, 1987.

EVB Software Engineering, Inc., Creating Reusable Ada Software, 1987.

foguen, J. A., “Reusing and Interconnccting Software Components,” Computer, February, 1986.
Goodenough, J. and others, Ada Reusability Guidelines, SofTech, Inc., April 1985.

IBM, Common User Access Advanced Interface Design Guide, SC23-4582-0, Junc 1989,

IEEE, Standard Glossary of Software Engineering Terminology, ANSI/IEEE STD 729-1983, ICEE
Standards Board, September 23, 1983.

Kernighan, B. W. and P. I. Plaugher, The Elements of Programming Siple, Yourdon, Inc., 1978.

LabTek Corp., Transportability Guideline for Ada Real-Time Software, U.S. Army HQ CI:COM Center
for Software Engineering, April 24, 1989.

Matsumoto, Y., “Some Experiences in Promoting Reusable Software Presentation in FHigher Abstract

Levels,” IEEE Transactions on Software Engineering, vol. SE-10 (5). Scptember 1984,
Matthews, E. R., Ada Exception Hana'i*y Seminar, IBM Systems Integration Division, May 1988.

(%4

Matthews, E. R., IBM Federal Systems Division Guide for Reusable Ada Components (Draft),
September 17, 1987.

Matthews, E. R., “Observations on the Portability of Ada 1/0,” ACM SIGAda Ada Letters, vol. VII,
no. 5, September/October 1987.

Bibliography 18

McDonnell Douglas Astronautics Company, “Overview and Commonality Study Results,,” Common
Ada Missile Packages (CAMP), AFATL-TR-85-93, May 1986.

Mcliroy, M. D., “Mass Produced Softwarc Components,” Report on a conference by the NATO Science
Committee, Garmisch, Germany, October 7-11, 1968.

Mendal, Geoffrey O., “Three Reasons to Avoid the Use Clause,” ACM SIGAda Ada Letters, voi. VIII,
no. 1, January/February 1988.

Merriam-Webster Inc., Webster's Ninth New Collegiate Dictionary, Springficld Mass., 1988.

Nielsen, K. W., “Task Coupling and Cohesion in Ada,” ACM SIGAda Ada letters, vol. VI, no. 4,
July/August 1986.

Nissen, J. and P. Wallis, Portability and Style in Ada, Cambnidge University Press, 1984,
Pappas, F., Ada Portability Guidelines, SofTech, Inc., March 1985,
Peters, T. J. and R. H. Waterman, Ir., In Search of Excellence, Warner Books, 1982.

Peterson, A. S., “Coming to Terms with Terminology for Software Reuse,” Reuse in Practice Workshop,
1989.

Prieto-Diaz, R. and P. Freeman, “Classifying Software for Reusability,” IEEE Software, January, 1987.
Racine, R., “Why the Use Clausc is Beneficial,” ACM SIGAda Ada Letters, vol. VIII, no. 3, May/June
1988.

U.S. Department of Defense, Ada Joint Program Office, Rationale for the Design of the Ada
Programming Language, 1984.

U.S. Department of Defense, Ada Joint Program Office, Reference Manual for the Ada Programming
Language, ANSI/MIL-STD-1815A, February, 17 1983.

Rosen, J. P., “In defense of the ‘use’ clause,” ACM SIGAda Ada Letters, vol. VII, no. 7,
November/December 1987,

Rymer, J. and T. McKeever, The FSD Ada Style Guide, 1986.

Software Finginecring Institute, “Reuse: Where to Begin and Why,” Affiliates Symposium, May 2-4,
1989.

SofTech, Inc. ISEC Portability Guidelines, December 1985.
SofTech, Inc. ISEC Reusability Guidelines, December 1985,

The Software Productivity Consortium, Ada Quality and Style: Guidelines for Professional
Programmers, June 1989.

Sommetville, 1., Software Engineering, 3rd. edition, Addison-Wesley, 1989.

St. Dennis, R., P. Stachour, E. Frankowski, and E. Onucgbe, “Mcasurable Characteristics of Reusable
Ada Software,” ACM SIGAda Ada Letters, vol. VI, no. 2, March/April 1986,

Stevens, W. P., G. J. Myers, and 1.. 1.. Constantine, “Structurcd Design,” IBAM Systems Journal, no. 2.,
1974.

Bibliography 19

Acronyms

The following is a list of acronyms, abbreviations, and similar terms used in this technical report. The
attached guides contain separate lists.

Acronym
Ada
AdaMAT
AdaNET
ASR
CDRL
DID
DoD
IBM
IEEE
IR40
NRL
Oracle
RAPID
RFP
SAIC
SOwW
srC
STARS
VAX
vDD
VYMS

Meaning

a DoD mandated programming language

an Ada Metric Analysis Tool by Dynamics Rescarch Corp.

a public domain Ada software reuse scrvice

Ada Source Repository (also know as SIMTEL-20)
Contract Data Requirements List

Data Item Description

(United States) Department of Defensc

International Business Machincs

Institute of Electrical and Electronic Engincers

IBM STARS R-increment task for Repository Integration
Naval Research Laboratory

a commercial relational database product

an Army Ada reuse repository system

Request for Proposal

Science Applications International Corporation
Statement of Work

Software Productivity Consortium

Software Technology for Adaptablc, Reliable Systems

a computer system from Digital Equipment Corporation
Version Description Document

a proprietary operating system for a VAX

Acronyms

20

Attachments

Attached are the STARS prime contract R-increment versions of the IBM STARS Repository Guidebook,
the STARS Reusability Guidelines, and the IBM STARS Repository User’s Guide. We welcome all
comments and suggestions that result from your revicw of this material. Your input will help us achieve our
goal of making these guides the primary reference source for uscrs and administrators of the Repository.

Attachments 21

